3522 independent reflections

 $R_{\rm int} = 0.040$

2286 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(2-Chlorobenzylidene)-3,5-dihydroxybenzohydrazide dihydrate

Ling Yuan,^{a,c} Yi Nan,^b Jing-Yuan Li^c and Xiu-Lan Huang^c*

^aPharmacy College of Ningxia Medical University, Yinchuan, Ningxia Province 750004, People's Republic of China, ^bTraditional Chinese Medicine College of Ningxia Medical University, Ningxia Province, 750004, People's Republic of China, and ^cMinority Traditional Medical Center of Minzu University of China, Beijing 100081, People's Republic of China

Correspondence e-mail: Nanyiailing10@126.com

Received 10 October 2011; accepted 14 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.140; data-to-parameter ratio = 17.7.

In the Schiff base molecule of the title compound, $C_{14}H_{11}ClN_2O_3 \cdot 2H_2O_3$, the benzene rings form a dihedral angle of 20.6 (1)°. The water molecules of crystallization are involved in the formation of a three-dimensional hydrogenbonding network via O-H···O and N-H···O hydrogen bonds.

Related literature

For general background to Schiff base compounds, see: Brückner et al. (2000); Harrop et al. (2003); Zhang et al. (2008). For related structures, see: Diao et al. (2007); Jiang et al. (2008); Huang et al. (2008); Deng et al. (2009).

Experimental

Crystal data C14H11CIN2O3·2H2O $M_r = 326.73$ Monoclinic, $P2_1/c$ a = 8.023 (2) Å b = 11.852 (4) Å c = 16.318(5) Å $\beta = 100.387 \ (4)^{\circ}$

V = 1526.1 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.28 \text{ mm}^-$ T = 296 K0.44 \times 0.12 \times 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 12729 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	199 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
3522 reflections	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1		
Hydrogen-bond geometry	(Å.	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2B\cdots O5$	0.82	1.87	2.674 (3)	168
$O3-H3A\cdotsO1^{i}$	0.82	1.85	2.665 (2)	169
$N2 - H2A \cdots O2^{ii}$	0.86	2.36	3.196 (3)	164
$O4 - H4B \cdots O1$	0.85	2.12	2.960 (4)	171
$O5-H5A\cdots O4^{iii}$	0.85	1.99	2.816 (4)	163
$O5-H5B\cdots O3^{iv}$	0.85	2.14	2.902 (3)	150

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This project was supported by the National Natural Science Foundation of China (grant No. 81102893) and 2011 Ningxia Science and Technology Key Projects (grant No. 2011-25) and 2009 Ningxia Science and Technology Key Projects (grant No. 232).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5172).

References

- Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106. Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, S., Han, L., Huang, S., Zhang, H., Diao, Y. & Liu, K. (2009). Acta Cryst. E65, 0721.
- Diao, Y.-P., Zhang, J.-K., Xie, S.-Q. & Kang, T.-G. (2007). Acta Cryst. E63, 04908
- Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.
- Huang, S.-S., Diao, Y.-P. & Kang, T. G. (2008). Z. Kristallogr.-New Cryst. Struct. 223, 167-168.
- Jiang, Q.-H., Xu, Y.-H., Jian, L.-Y. & Zhao, L.-M. (2008). Acta Cryst. E64, 0338.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.

supplementary materials

Acta Cryst. (2011). E67, o3017 [doi:10.1107/S1600536811042681]

(E)-N'-(2-Chlorobenzylidene)-3,5-dihydroxybenzohydrazide dihydrate

L. Yuan, Y. Nan, J.-Y. Li and X.-L. Huang

Comment

Schiff base compounds are known to exhibit antibacterial and antitumor properties (Brückner *et al.*, 2000; Harrop *et al.*, 2003; Zhang *et al.*, 2008). In order to expand this filed, we report here the structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those found in the related compounds (Diao *et al.*, 2007; Deng *et al.*, 2009; Huang *et al.*, 2008, Jiang *et al.*, 2008). In the Shiff base molecule, two benzene rings form a dihedral angle of 20.6 (1)°.

In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds (Table 1) consolidate the crystal packing.

Experimental

2-Chlorobenzaldehyde (0.1 mmol, 14.1 mg) and 3,5-dihydroxybenzhydrazide (0.1 mmol, 16.8 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 1 h and filtered. After keeping the filtrate in air for three days, yellow crystals were formed.

Refinement

H atoms were placed in calculated positions (C—H 0.93 Å; N—H 0.86 Å; O—H 0.82 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)=)=1.2-1.5U_{eq}$ of the parent atom.

Figures

Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

(E)-N'-(2-Chlorobenzylidene)-3,5-dihydroxybenzohydrazide dihydrate

Crystal data $C_{14}H_{11}CIN_2O_3 \cdot 2H_2O$ $M_r = 326.73$ Monoclinic, $P2_1/c$ Hall symbol: -P2ybc a = 8.023 (2) Å

F(000) = 680 $D_x = 1.422 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 4061 reflections \theta = 2.5-27.1^\circ

b = 11.852 (4) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 16.318 (5) Å	T = 296 K
$\beta = 100.387 \ (4)^{\circ}$	Stick, yellow
$V = 1526.1 (8) \text{ Å}^3$	0.44 imes 0.12 imes 0.07 mm
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	2286 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.040$
graphite	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
φ and ω scans	$h = -10 \rightarrow 10$
12729 measured reflections	$k = -15 \rightarrow 15$
3522 independent reflections	$l = -20 \rightarrow 21$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.140$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.044P)^2 + 1.2P]$ where $P = (F_0^2 + 2F_c^2)/3$
3522 reflections	$(\Delta/\sigma)_{max} < 0.001$
199 parameters	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.07549 (13)	0.73732 (7)	0.46696 (6)	0.0836 (3)
01	0.4482 (3)	0.20583 (16)	0.45642 (10)	0.0555 (5)
O2	0.7564 (2)	0.07180 (15)	0.22642 (10)	0.0508 (5)

H2B	0.7932	0.0426	0.2716	0.076*
03	0.3480 (3)	0.33745 (18)	0.10033 (10)	0.0615 (6)
H3A	0.3864	0.3177	0.0593	0.092*
N1	0.3161 (2)	0.41028 (17)	0.48357 (10)	0.0374 (4)
N2	0.3589 (2)	0.37857 (17)	0.40850 (10)	0.0368 (4)
H2A	0.3450	0.4252	0.3674	0.044*
C1	0.1081 (3)	0.6554 (2)	0.55602 (17)	0.0472 (6)
C2	0.0554 (4)	0.6968 (3)	0.6271 (2)	0.0621 (8)
H2	0.0022	0.7666	0.6257	0.074*
C3	0.0818 (4)	0.6351 (3)	0.6986 (2)	0.0678 (9)
Н3	0.0483	0.6635	0.7462	0.081*
C4	0.1571 (4)	0.5318 (3)	0.70062 (18)	0.0687 (9)
H4	0.1738	0.4897	0.7495	0.082*
C5	0.2090 (4)	0.4891 (3)	0.63044 (16)	0.0550 (7)
Н5	0.2596	0.4184	0.6326	0.066*
C6	0.1866 (3)	0.5505 (2)	0.55659 (14)	0.0382 (5)
C7	0.2396 (3)	0.5047 (2)	0.48164 (14)	0.0371 (5)
H7	0.2171	0.5453	0.4321	0.044*
C8	0.4220 (3)	0.2757 (2)	0.39941 (12)	0.0353 (5)
C9	0.4635 (3)	0.25014 (19)	0.31552 (12)	0.0326 (5)
C10	0.5859 (3)	0.16929 (19)	0.31167 (12)	0.0347 (5)
H10	0.6357	0.1302	0.3592	0.042*
C11	0.6334 (3)	0.14750 (19)	0.23525 (13)	0.0351 (5)
C12	0.5573 (3)	0.2046 (2)	0.16457 (12)	0.0387 (5)
H12	0.5916	0.1910	0.1140	0.046*
C13	0.4305 (3)	0.2818 (2)	0.16880 (12)	0.0387 (5)
C14	0.3828 (3)	0.3059 (2)	0.24457 (13)	0.0393 (5)
H14	0.2981	0.3585	0.2477	0.047*
O4	0.2697 (4)	-0.0135 (3)	0.4316 (2)	0.1159 (11)
H4A	0.3177	-0.0688	0.4595	0.174*
H4B	0.3266	0.0473	0.4339	0.174*
O5	0.9176 (3)	-0.00817 (18)	0.37266 (13)	0.0690 (6)
H5A	1.0182	-0.0070	0.4001	0.104*
H5B	0.8554	-0.0465	0.3993	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1051 (7)	0.0521 (5)	0.0969 (7)	0.0157 (5)	0.0274 (6)	0.0134 (4)
01	0.0881 (14)	0.0572 (11)	0.0272 (8)	0.0154 (10)	0.0261 (9)	0.0084 (8)
O2	0.0624 (12)	0.0562 (11)	0.0360 (9)	0.0213 (9)	0.0146 (8)	-0.0016 (8)
O3	0.0820 (14)	0.0817 (14)	0.0224 (8)	0.0345 (12)	0.0139 (8)	0.0076 (8)
N1	0.0404 (11)	0.0505 (12)	0.0244 (8)	0.0010 (9)	0.0141 (8)	-0.0046 (8)
N2	0.0438 (11)	0.0479 (11)	0.0217 (8)	0.0006 (9)	0.0140 (8)	-0.0011 (8)
C1	0.0379 (14)	0.0438 (14)	0.0619 (16)	-0.0085 (11)	0.0146 (12)	-0.0153 (12)
C2	0.0455 (16)	0.0534 (17)	0.093 (2)	-0.0089 (13)	0.0284 (16)	-0.0352 (17)
C3	0.0585 (19)	0.087 (2)	0.067 (2)	-0.0154 (17)	0.0349 (16)	-0.0362 (18)
C4	0.071 (2)	0.097 (3)	0.0449 (15)	0.0004 (19)	0.0279 (14)	-0.0074 (16)

supplementary materials

C5	0.0568 (17)	0.0714 (19)	0.0414 (14)	0.0092 (14)	0.0212 (12)	-0.0046 (13)
C6	0.0311 (12)	0.0477 (13)	0.0384 (12)	-0.0053 (10)	0.0131 (9)	-0.0095 (10)
C7	0.0366 (12)	0.0455 (13)	0.0311 (11)	-0.0054 (11)	0.0114 (9)	-0.0022 (9)
C8	0.0394 (12)	0.0451 (13)	0.0240 (10)	0.0002 (10)	0.0129 (9)	-0.0016 (9)
C9	0.0368 (12)	0.0419 (12)	0.0209 (9)	-0.0035 (10)	0.0103 (8)	-0.0017 (8)
C10	0.0403 (13)	0.0412 (12)	0.0235 (9)	0.0004 (10)	0.0081 (9)	0.0006 (9)
C11	0.0406 (13)	0.0376 (12)	0.0290 (10)	-0.0009 (10)	0.0112 (9)	-0.0055 (9)
C12	0.0497 (14)	0.0474 (13)	0.0220 (9)	0.0015 (11)	0.0146 (9)	-0.0062 (9)
C13	0.0464 (13)	0.0481 (13)	0.0222 (10)	0.0042 (11)	0.0076 (9)	0.0001 (9)
C14	0.0464 (14)	0.0480 (13)	0.0257 (10)	0.0100 (11)	0.0124 (9)	-0.0005 (9)
O4	0.099 (2)	0.098 (2)	0.138 (3)	-0.0265 (18)	-0.0111 (19)	0.0009 (19)
O5	0.0685 (14)	0.0749 (14)	0.0616 (12)	0.0020 (11)	0.0063 (10)	0.0216 (11)

Geometric parameters (Å, °)

Cl1—C1	1.728 (3)	C5—C6	1.391 (4)
O1—C8	1.235 (3)	С5—Н5	0.9300
O2—C11	1.361 (3)	C6—C7	1.469 (3)
O2—H2B	0.8200	С7—Н7	0.9300
O3—C13	1.362 (3)	C8—C9	1.497 (3)
O3—H3A	0.8200	C9—C10	1.382 (3)
N1—C7	1.274 (3)	C9—C14	1.388 (3)
N1—N2	1.383 (2)	C10-C11	1.392 (3)
N2—C8	1.338 (3)	C10—H10	0.9300
N2—H2A	0.8600	C11—C12	1.381 (3)
C1—C6	1.392 (4)	C12—C13	1.379 (3)
C1—C2	1.393 (4)	С12—Н12	0.9300
C2—C3	1.361 (5)	C13—C14	1.388 (3)
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.363 (5)	O4—H4A	0.8500
С3—Н3	0.9300	O4—H4B	0.8500
C4—C5	1.383 (4)	O5—H5A	0.8500
С4—Н4	0.9300	O5—H5B	0.8500
C4—H4 C11—O2—H2B	0.9300 109.5	О5—H5B N1—C7—H7	0.8500 119.5
C4—H4 C11—O2—H2B C13—O3—H3A	0.9300 109.5 109.5	О5—H5B N1—C7—H7 C6—C7—H7	0.8500 119.5 119.5
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2	0.9300 109.5 109.5 114.36 (19)	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2	0.8500 119.5 119.5 122.96 (18)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1	0.9300 109.5 109.5 114.36 (19) 120.34 (18)	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9	0.8500 119.5 119.5 122.96 (18) 121.1 (2)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9	0.8500 119.5 119.5 122.96 (18) 121.1 (2) 115.90 (19)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14	0.8500 119.5 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3)	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C8	0.8500 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C1	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19)	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C14 C10—C9—C8 C14—C9—C8	0.8500 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C1 C2—C1—C11	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19) 118.6 (2)	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C8 C14—C9—C8 C14—C9—C8 C9—C10—C11	0.8500 119.5 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2) 118.7 (2)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C11 C2—C1—C11 C3—C2—C1	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19) 118.6 (2) 120.1 (3)	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C4 C14—C9—C8 C14—C9—C8 C9—C10—C11 C9—C10—H10	0.8500 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2) 118.7 (2) 120.6
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C11 C2—C1—C11 C3—C2—C1 C3—C2—H2	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19) 118.6 (2) 120.1 (3) 120.0	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C14 C10—C9—C8 C14—C9—C8 C9—C10—C11 C9—C10—H10 C11—C10—H10	0.8500 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2) 118.7 (2) 120.6 120.6
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C1 C2—C1—C11 C3—C2—C1 C3—C2—H2 C1—C2—H2	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19) 118.6 (2) 120.1 (3) 120.0 120.0	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C14 C10—C9—C8 C14—C9—C8 C9—C10—C11 C9—C10—H10 C11—C10—H10 O2—C11—C12	0.8500 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2) 118.7 (2) 120.6 120.6 117.05 (18)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C1 C2—C1—C11 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19) 118.6 (2) 120.1 (3) 120.0 120.0 120.2 (3)	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C8 C14—C9—C8 C9—C10—C11 C9—C10—H10 C11—C10—H10 O2—C11—C12 O2—C11—C10	0.8500 119.5 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2) 118.7 (2) 120.6 120.6 117.05 (18) 122.6 (2)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C11 C2—C1—C11 C3—C2—C1 C3—C2—H2 C1—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19) 118.6 (2) 120.1 (3) 120.0 120.0 120.2 (3) 119.9	O5—H5B N1—C7—H7 C6—C7—H7 O1—C8—N2 O1—C8—C9 N2—C8—C9 C10—C9—C14 C10—C9—C14 C10—C9—C8 C14—C9—C8 C9—C10—C11 C9—C10—H10 C11—C10—H10 O2—C11—C12 O2—C11—C10 C12—C11—C10	0.8500 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2) 118.7 (2) 120.6 120.6 117.05 (18) 122.6 (2) 120.4 (2)
C4—H4 C11—O2—H2B C13—O3—H3A C7—N1—N2 C8—N2—N1 C8—N2—H2A N1—N2—H2A C6—C1—C2 C6—C1—C1 C2—C1—C11 C3—C2—C1 C3—C2—H2 C1—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3	0.9300 109.5 109.5 114.36 (19) 120.34 (18) 119.8 119.8 120.9 (3) 120.46 (19) 118.6 (2) 120.1 (3) 120.0 120.0 120.0 120.2 (3) 119.9	O5-H5B N1-C7-H7 C6-C7-H7 O1-C8-N2 O1-C8-C9 N2-C8-C9 C10-C9-C14 C10-C9-C8 C14-C9-C8 C9-C10-C11 C9-C10-H10 C11-C10-H10 O2-C11-C12 O2-C11-C12 O2-C11-C10 C12-C11-C10 C13-C12-C11	0.8500 119.5 122.96 (18) 121.1 (2) 115.90 (19) 121.39 (18) 117.35 (19) 121.3 (2) 118.7 (2) 120.6 120.6 117.05 (18) 122.6 (2) 120.4 (2) 120.16 (18)

С3—С4—Н4	119.8	C11—C12—H12	119.9
С5—С4—Н4	119.8	O3—C13—C12	122.25 (18)
C4—C5—C6	121.0 (3)	O3—C13—C14	117.4 (2)
С4—С5—Н5	119.5	C12—C13—C14	120.3 (2)
С6—С5—Н5	119.5	C9—C14—C13	118.9 (2)
C5—C6—C1	117.4 (2)	C9—C14—H14	120.6
C5—C6—C7	121.1 (2)	C13—C14—H14	120.6
C1—C6—C7	121.5 (2)	H4A—O4—H4B	116.3
N1—C7—C6	120.9 (2)	H5A—O5—H5B	109.2
C7—N1—N2—C8	-172.3 (2)	O1—C8—C9—C10	-24.0 (3)
C6—C1—C2—C3	0.6 (4)	N2-C8-C9-C10	154.7 (2)
Cl1—C1—C2—C3	-178.9 (2)	O1—C8—C9—C14	156.3 (2)
C1—C2—C3—C4	-1.1 (5)	N2-C8-C9-C14	-25.0 (3)
C2—C3—C4—C5	0.6 (5)	C14—C9—C10—C11	2.8 (3)
C3—C4—C5—C6	0.4 (5)	C8—C9—C10—C11	-176.9 (2)
C4—C5—C6—C1	-0.9 (4)	C9—C10—C11—O2	178.0 (2)
C4—C5—C6—C7	-179.2 (3)	C9-C10-C11-C12	-1.0 (3)
C2-C1-C6-C5	0.4 (4)	O2-C11-C12-C13	179.4 (2)
Cl1—C1—C6—C5	179.9 (2)	C10-C11-C12-C13	-1.6 (4)
C2—C1—C6—C7	178.7 (2)	C11—C12—C13—O3	-177.8 (2)
Cl1—C1—C6—C7	-1.7 (3)	C11-C12-C13-C14	2.4 (4)
N2—N1—C7—C6	-179.62 (19)	C10-C9-C14-C13	-2.0 (4)
C5-C6-C7-N1	-3.9 (4)	C8—C9—C14—C13	177.7 (2)
C1—C6—C7—N1	177.8 (2)	O3—C13—C14—C9	179.6 (2)
N1—N2—C8—O1	-1.5 (4)	C12—C13—C14—C9	-0.6 (4)
N1—N2—C8—C9	179.82 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2B…O5	0.82	1.87	2.674 (3)	168.
O3—H3A···O1 ⁱ	0.82	1.85	2.665 (2)	169.
N2—H2A····O2 ⁱⁱ	0.86	2.36	3.196 (3)	164.
O4—H4B…O1	0.85	2.12	2.960 (4)	171.
O5—H5A···O4 ⁱⁱⁱ	0.85	1.99	2.816 (4)	163.
O5—H5B···O3 ^{iv}	0.85	2.14	2.902 (3)	150.

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, y+1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, y-1/2, -z+1/2.

Fig. 1

